Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 89
1.
Hear Res ; 447: 109012, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38703433

Hearing loss is a common side effect of many tumor treatments. However, hearing loss can also occur as a direct result of certain tumors of the nervous system, the most common of which are the vestibular schwannomas (VS). These tumors arise from Schwann cells of the vestibulocochlear nerve and their main cause is the loss of function of NF2, with 95 % of cases being sporadic and 5 % being part of the rare neurofibromatosis type 2 (NF2)-related Schwannomatosis. Genetic variations in NF2 do not fully explain the clinical heterogeneity of VS, and interactions between Schwann cells and their microenvironment appear to be critical for tumor development. Preclinical in vitro and in vivo models of VS are needed to develop prognostic biomarkers and targeted therapies. In addition to VS, other tumors can affect hearing. Meningiomas and other masses in the cerebellopontine angle can compress the vestibulocochlear nerve due to their anatomic proximity. Gliomas can disrupt several neurological functions, including hearing; in fact, glioblastoma multiforme, the most aggressive subtype, may exhibit early symptoms of auditory alterations. Besides, treatments for high-grade tumors, including chemotherapy or radiotherapy, as well as incomplete resections, can induce long-term auditory dysfunction. Because hearing loss can have an irreversible and dramatic impact on quality of life, it should be considered in the clinical management plan of patients with tumors, and monitored throughout the course of the disease.

2.
Hear Res ; 446: 108997, 2024 May.
Article En | MEDLINE | ID: mdl-38564963

The use of cochlear implants (CIs) is on the rise for patients with vestibular schwannoma (VS). Besides CI following tumor resection, new scenarios such as implantation in observed and/or irradiated tumors are becoming increasingly common. A significant emerging trend is the need of intraoperative evaluation of the functionality of the cochlear nerve in order to decide if a CI would be placed. The purpose of this paper is to explore the experience of a tertiary center with the application of the Auditory Nerve Test System (ANTS) in various scenarios regarding VS patients. The results are compared to that of the studies that have previously used the ANTS in this condition. Patients with unilateral or bilateral VS (NF2) who were evaluated with the ANTS prior to considering CI in a tertiary center between 2021 and 2023 were analyzed. The presence of a robust wave V was chosen to define a positive electrical auditory brainstem response (EABR). Two patients underwent promontory stimulation (PromStim) EABR previous to ANTS evaluation. Seven patients, 2 NF-2 and 5 with sporadic VS were included. The initial scenario was simultaneous translabyrinthine (TL) tumor resection and CI in 3 cases while a CI placement without tumor resection was planned in 4 cases. The ANTS was positive in 4 cases, negative in 2 cases, and uncertain in one case. Two patients underwent simultaneous TL and CI, 1 patient simultaneous TL and auditory brainstem implant, 3 patients posterior tympanotomy with CI, and 1 patient had no implant placement. In the 5 patients undergoing CI, sound detection was present. There was a good correlation between the PromStim and ANTS EABR. The literature research yielded 35 patients with complete information about EABR response. There was one false negative and one false positive case; that is, the 28 implanted cases with a present wave V following tumor resection had some degree of auditory perception in all but one case. The ANTS is a useful intraoperative tool to asses CI candidacy in VS patients undergoing observation, irradiation or surgery. A positive strongly predicts at least sound detection with the CI.


Cochlear Implantation , Cochlear Implants , Cochlear Nerve , Evoked Potentials, Auditory, Brain Stem , Hearing , Neuroma, Acoustic , Humans , Neuroma, Acoustic/surgery , Neuroma, Acoustic/physiopathology , Middle Aged , Cochlear Implantation/instrumentation , Cochlear Nerve/physiopathology , Female , Male , Adult , Aged , Predictive Value of Tests , Treatment Outcome , Intraoperative Neurophysiological Monitoring/methods , Retrospective Studies , Clinical Decision-Making , Acoustic Stimulation , Patient Selection
3.
BMC Genomics ; 25(1): 359, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605287

Inherited hearing impairment is a remarkably heterogeneous monogenic condition, involving hundreds of genes, most of them with very small (< 1%) epidemiological contributions. The exception is GJB2, the gene encoding connexin-26 and underlying DFNB1, which is the most frequent type of autosomal recessive non-syndromic hearing impairment (ARNSHI) in most populations (up to 40% of ARNSHI cases). DFNB1 is caused by different types of pathogenic variants in GJB2, but also by large deletions that keep the gene intact but remove an upstream regulatory element that is essential for its expression. Such large deletions, found in most populations, behave as complete loss-of-function variants, usually associated with a profound hearing impairment. By using CRISPR-Cas9 genetic edition, we have generated a murine model (Dfnb1em274) that reproduces the most frequent of those deletions, del(GJB6-D13S1830). Dfnb1em274 homozygous mice are viable, bypassing the embryonic lethality of the Gjb2 knockout, and present a phenotype of profound hearing loss (> 90 dB SPL) that correlates with specific structural abnormalities in the cochlea. We show that Gjb2 expression is nearly abolished and its protein product, Cx26, is nearly absent all throughout the cochlea, unlike previous conditional knockouts in which Gjb2 ablation was not obtained in all cell types. The Dfnb1em274 model recapitulates the clinical presentation of patients harbouring the del(GJB6-D13S1830) variant and thus it is a valuable tool to study the pathological mechanisms of DFNB1 and to assay therapies for this most frequent type of human ARNSHI.


Connexin 30 , Hearing Loss , Animals , Mice , Connexin 26/genetics , Connexin 30/genetics , Disease Models, Animal , Hearing Loss/genetics , Mutation , Phenotype
4.
Article En | MEDLINE | ID: mdl-38346489

INTRODUCTION: Vestibular schwannoma (VS) is the most common tumour of the cerebellopontine angle. The greater accessibility to radiological tests has increased its diagnosis. Taking into account the characteristics of the tumour, the symptoms and the age of the patient, three therapeutic strategies have been proposed: observation, surgery or radiotherapy. Choosing the most appropriate for each patient is a frequent source of controversy. MATERIAL AND METHODS: This paper includes an exhaustive literature review of issues related to VS that can serve as a clinical guide in the management of patients with these lesions. The presentation has been oriented in the form of questions that the clinician usually asks himself and the answers have been written and/or reviewed by a panel of national and international experts consulted by the Otology Commission of the SEORL-CCC. RESULTS: A list has been compiled containing the 13 most controversial thematic blocks on the management of VS in the form of 50 questions, and answers to all of them have been sought through a systematic literature review (articles published on PubMed and Cochrane Library between 1992 and 2023 related to each thematic area). Thirty-three experts, led by the Otology Committee of SEORL-CCC, have analyzed and discussed all the answers. In Annex 1, 14 additional questions divided into 4 thematic areas can be found. CONCLUSIONS: This clinical practice guideline on the management of VS offers agreed answers to the most common questions that are asked about this tumour. The absence of sufficient prospective studies means that the levels of evidence on the subject are generally medium or low. This fact increases the interest of this type of clinical practice guidelines prepared by experts.


Neuroma, Acoustic , Radiosurgery , Humans , Neuroma, Acoustic/diagnosis , Neuroma, Acoustic/therapy , Prospective Studies , Magnetic Resonance Imaging , Microsurgery
5.
Development ; 150(9)2023 05 01.
Article En | MEDLINE | ID: mdl-37017267

Developmental senescence is a form of programmed senescence that contributes to morphogenesis during embryonic development. We showed recently that the SIX1 homeoprotein, an essential regulator of organogenesis, is also a repressor of adult cellular senescence. Alterations in the SIX/EYA pathway are linked to the human branchio-oto-renal (BOR) syndrome, a rare congenital disorder associated with defects in the ears, kidneys and branchial arches. Here, we have used Six1-deficient mice, an animal model of the BOR syndrome, to investigate whether dysfunction of senescence underpins the developmental defects associated with SIX1 deficiency. We have focused on the developing inner ear, an organ with physiological developmental senescence that is severely affected in Six1-deficient mice and BOR patients. We show aberrant levels and distribution of senescence markers in Six1-deficient inner ears concomitant with defective morphogenesis of senescent structures. Transcriptomic analysis and ex vivo assays support a link between aberrant senescence and altered morphogenesis in this model, associated with deregulation of the TGFß/BMP pathway. Our results show that misregulation of embryo senescence may lead to genetic developmental disorders, significantly expanding the connection between senescence and disease.


Branchio-Oto-Renal Syndrome , Ear, Inner , Adult , Humans , Mice , Animals , Protein Tyrosine Phosphatases/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/genetics , Branchio-Oto-Renal Syndrome/genetics , Homeodomain Proteins/metabolism
6.
Antioxidants (Basel) ; 12(2)2023 Jan 19.
Article En | MEDLINE | ID: mdl-36829792

Insulin-like growth factor 1 (IGF-1) is a trophic factor for the nervous system where it exerts pleiotropic effects, including the regulation of metabolic homeostasis. IGF-1 deficiency induces morphological alterations in the cochlea, apoptosis and hearing loss. While multiple studies have addressed the role of IGF-1 in hearing protection, its potential function in the modulation of otic metabolism remains unclear. Here, we report that "House Ear Institute-organ of Corti 1" (HEI-OC1) auditory cells express IGF-system genes that are regulated during their differentiation. Upon binding to its high-affinity receptor IGF1R, IGF-1 activates AKT and mTOR signaling to stimulate anabolism and, concomitantly, to reduce autophagic catabolism in HEI-OC1 progenitor cells. Notably, IGF-1 stimulation during HEI-OC1 differentiation to mature otic cells sustained both constructive metabolism and autophagic flux, possibly to favor cell remodeling. IGF1R engagement and downstream AKT signaling promoted HEI-OC1 cell survival by maintaining redox balance, even when cells were challenged with the ototoxic agent cisplatin. Our findings establish that IGF-1 not only serves an important function in otic metabolic homeostasis but also activates antioxidant defense mechanisms to promote hair cell survival during the stress response to insults.

10.
Genes (Basel) ; 12(10)2021 09 29.
Article En | MEDLINE | ID: mdl-34680948

Insulin-like growth factor 1 (IGF-1) is a peptide hormone belonging to the insulin family of proteins. Almost all of the biological effects of IGF-1 are mediated through binding to its high-affinity tyrosine kinase receptor (IGF1R), a transmembrane receptor belonging to the insulin receptor family. Factors, receptors and IGF-binding proteins form the IGF system, which has multiple roles in mammalian development, adult tissue homeostasis, and aging. Consequently, mutations in genes of the IGF system, including downstream intracellular targets, underlie multiple common pathologies and are associated with multiple rare human diseases. Here we review the contribution of the IGF system to our understanding of the molecular and genetic basis of human hearing loss by describing, (i) the expression patterns of the IGF system in the mammalian inner ear; (ii) downstream signaling of IGF-1 in the hearing organ; (iii) mouse mutations in the IGF system, including upstream regulators and downstream targets of IGF-1 that inform cochlear pathophysiology; and (iv) human mutations in these genes causing hearing loss.


Hearing Loss/genetics , Hearing , Insulin-Like Growth Factor I/metabolism , Animals , Hearing Loss/metabolism , Hearing Loss/pathology , Humans , Insulin-Like Growth Factor I/genetics , Mutation , Signal Transduction
11.
Front Cell Neurosci ; 15: 711269, 2021.
Article En | MEDLINE | ID: mdl-34539349

Nitrones are potent antioxidant molecules able to reduce oxidative stress by trapping reactive oxygen and nitrogen species. The antioxidant potential of nitrones has been extensively tested in multiple models of human diseases. Sensorineural hearing loss has a heterogeneous etiology, genetic alterations, aging, toxins or exposure to noise can cause damage to hair cells at the organ of Corti, the hearing receptor. Noxious stimuli share a battery of common mechanisms by which they cause hair cell injury, including oxidative stress, the generation of free radicals and redox imbalance. Therefore, targeting oxidative stress-mediated hearing loss has been the subject of much attention. Here we review the chemistry of nitrones, the existing literature on their use as antioxidants and the general state of the art of antioxidant treatments for hearing loss.

12.
Antioxidants (Basel) ; 10(9)2021 Aug 25.
Article En | MEDLINE | ID: mdl-34572983

Stress-activated protein kinases (SAPK) are associated with sensorineural hearing loss (SNHL) of multiple etiologies. Their activity is tightly regulated by dual-specificity phosphatase 1 (DUSP1), whose loss of function leads to sustained SAPK activation. Dusp1 gene knockout in mice accelerates SNHL progression and triggers inflammation, redox imbalance and hair cell (HC) death. To better understand the link between inflammation and redox imbalance, we analyzed the cochlear transcriptome in Dusp1-/- mice. RNA sequencing analysis (GSE176114) indicated that Dusp1-/- cochleae can be defined by a distinct profile of key cellular expression programs, including genes of the inflammatory response and glutathione (GSH) metabolism. To dissociate the two components, we treated Dusp1-/- mice with N-acetylcysteine, and hearing was followed-up longitudinally by auditory brainstem response recordings. A combination of immunofluorescence, Western blotting, enzymatic activity, GSH levels measurements and RT-qPCR techniques were used. N-acetylcysteine treatment delayed the onset of SNHL and mitigated cochlear damage, with fewer TUNEL+ HC and lower numbers of spiral ganglion neurons with p-H2AX foci. N-acetylcysteine not only improved the redox balance in Dusp1-/- mice but also inhibited cytokine production and reduced macrophage recruitment. Our data point to a critical role for DUSP1 in controlling the cross-talk between oxidative stress and inflammation.

13.
Cells ; 10(7)2021 07 03.
Article En | MEDLINE | ID: mdl-34359856

Insulin-like growth factor 1 (IGF-1) deficiency is an ultrarare syndromic human sensorineural deafness. Accordingly, IGF-1 is essential for the postnatal maturation of the cochlea and the correct wiring of hearing in mice. Less severe decreases in human IGF-1 levels have been associated with other hearing loss rare genetic syndromes, as well as with age-related hearing loss (ARHL). However, the underlying mechanisms linking IGF-1 haploinsufficiency with auditory pathology and ARHL have not been studied. Igf1-heterozygous mice express less Igf1 transcription and have 40% lower IGF-1 serum levels than wild-type mice. Along with ageing, IGF-1 levels decreased concomitantly with the increased expression of inflammatory cytokines, Tgfb1 and Il1b, but there was no associated hearing loss. However, noise exposure of these mice caused increased injury to sensory hair cells and irreversible hearing loss. Concomitantly, there was a significant alteration in the expression ratio of pro- and anti-inflammatory cytokines in Igf1+/- mice. Unbalanced inflammation led to the activation of the stress kinase JNK and the failure to activate AKT. Our data show that IGF-1 haploinsufficiency causes a chronic subclinical proinflammatory age-associated state and, consequently, greater susceptibility to stressors. This work provides the molecular bases to further understand hearing disorders linked to IGF-1 deficiency.


Aging/pathology , Cochlea/pathology , Haploinsufficiency/genetics , Hearing Loss, Noise-Induced/pathology , Inflammation/pathology , Insulin-Like Growth Factor I/metabolism , Animals , Auditory Threshold , Biomarkers/metabolism , Cell Death/genetics , Cochlea/physiopathology , Cytokines/genetics , Cytokines/metabolism , Gene Expression Profiling , Gene Expression Regulation , Hearing Loss, Noise-Induced/blood , Hearing Loss, Noise-Induced/genetics , Hearing Loss, Noise-Induced/physiopathology , Heterozygote , Inflammation/blood , Inflammation/genetics , Inflammation/physiopathology , Insulin-Like Growth Factor I/genetics , Mice , Noise , Oxidative Stress/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Synapses/metabolism
14.
Front Cell Dev Biol ; 9: 678760, 2021.
Article En | MEDLINE | ID: mdl-34179008

Sphingolipids are bioactive lipid components of cell membranes with important signal transduction functions in health and disease. Ceramide is the central building block for sphingolipid biosynthesis and is processed to form structurally and functionally distinct sphingolipids. Ceramide can be phosphorylated by ceramide kinase (CERK) to generate ceramide-1-phosphate, a cytoprotective signaling molecule that has been widely studied in multiple tissues and organs, including the developing otocyst. However, little is known about ceramide kinase regulation during inner ear development. Using chicken otocysts, we show that genes for CERK and other enzymes of ceramide metabolism are expressed during the early stages of inner ear development and that CERK is developmentally regulated at the otic vesicle stage. To explore its role in inner ear morphogenesis, we blocked CERK activity in organotypic cultures of otic vesicles with a specific inhibitor. Inhibition of CERK activity impaired proliferation and promoted apoptosis of epithelial otic progenitors. CERK inhibition also compromised neurogenesis of the acoustic-vestibular ganglion. Insulin-like growth factor-1 (IGF-1) is a key factor for proliferation, survival and differentiation in the chicken otocyst. CERK inhibition decreased IGF-1-induced AKT phosphorylation and blocked IGF-1-induced cell survival. Overall, our data suggest that CERK is activated as a central element in the network of anti-apoptotic pro-survival pathways elicited by IGF-1 during early inner ear development.

17.
Aging Cell ; 19(12): e13275, 2020 12.
Article En | MEDLINE | ID: mdl-33222382

Aging of the auditory system is associated with the incremental production of reactive oxygen species (ROS) and the accumulation of oxidative damage in macromolecules, which contributes to cellular malfunction, compromises cell viability, and, ultimately, leads to functional decline. Cellular detoxification relies in part on the production of NADPH, which is an important cofactor for major cellular antioxidant systems. NADPH is produced principally by the housekeeping enzyme glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the rate-limiting step in the pentose phosphate pathway. We show here that G6PD transgenic mice (G6PD-Tg), which show enhanced constitutive G6PD activity and NADPH production along life, have lower auditory thresholds than wild-type mice during aging, together with preserved inner hair cell (IHC) and outer hair cell (OHC), OHC innervation, and a conserved number of synapses per IHC. Gene expression of antioxidant enzymes was higher in 3-month-old G6PD-Tg mice than in wild-type counterparts, whereas the levels of pro-apoptotic proteins were lower. Consequently, nitration of proteins, mitochondrial damage, and TUNEL+ apoptotic cells were all lower in 9-month-old G6PD-Tg than in wild-type counterparts. Unexpectedly, G6PD overexpression triggered low-grade inflammation that was effectively resolved in young mice, as shown by the absence of cochlear cellular damage and macrophage infiltration. Our results lead us to propose that NADPH overproduction from an early stage is an efficient mechanism to maintain the balance between the production of ROS and cellular detoxification power along aging and thus prevents hearing loss progression.


Aging/metabolism , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Presbycusis/enzymology , Presbycusis/prevention & control , Aging/physiology , Animals , Apoptosis , Auditory Threshold/physiology , Cochlea/metabolism , Cochlea/pathology , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NADP/biosynthesis , Oxidative Stress , Presbycusis/physiopathology , Reactive Oxygen Species/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Up-Regulation
18.
Front Genet ; 11: 583932, 2020.
Article En | MEDLINE | ID: mdl-33173540

Animal models are invaluable for biomedical research, especially in the context of rare diseases, which have a very low prevalence and are often complex. Concretely mouse models provide key information on rare disease mechanisms and therapeutic strategies that cannot be obtained by using only alternative methods, and greatly contribute to accelerate the development of new therapeutic options for rare diseases. Despite this, the use of experimental animals remains controversial. The combination of respectful management, ethical laws and transparency regarding animal experimentation contributes to improve society's opinion about biomedical research and positively impacts on research quality, which eventually also benefits patients. Here we present examples of current advances in preclinical research in rare diseases using mouse models, together with our perspective on future directions and challenges.

19.
Front Cell Neurosci ; 14: 217, 2020.
Article En | MEDLINE | ID: mdl-32973450

Cellular senescence has classically been associated with aging. Intriguingly, recent studies have also unraveled key roles for senescence in embryonic development, regeneration, and reprogramming. Developmental senescence has been reported during embryonic development in different organisms and structures, such as the endolymphatic duct during inner ear development of mammals and birds. However, there is no study addressing the possible role of senescence on otic neurogenesis. TGFß/SMAD is the best-known pathway linked to the induction of developmentally programmed cell senescence. Here, we studied if TGFß2 induces cellular senescence during acoustic-vestibular-ganglion (AVG) formation. Using organotypic cultures of AVG, and characterizing different stages of otic neurogenesis in the presence of TGFß2 and a selective TGF-ß receptor type-I inhibitor, we show that TGFß2 exerts a powerful action in inner ear neurogenesis but, contrary to what we recently observed during endolymphatic duct development, these actions are independent of cellular senescence. We show that TGFß2 reduces proliferation, and induces differentiation and neuritogenesis of neuroblasts, without altering cell death. Our studies highlight the roles of TGFß2 and cellular senescence in the precise regulation of cell fate within the developing inner ear and its different cell types, being their mechanisms of action highly cell-type dependent.

20.
Expert Opin Drug Discov ; 15(12): 1457-1471, 2020 12.
Article En | MEDLINE | ID: mdl-32838572

INTRODUCTION: Excessive exposure to noise is a common occurrence that contributes to approximately 50% of the non-genetic hearing loss cases. Researchers need to develop standardized preclinical models and identify molecular targets to effectively develop prevention and curative therapies. AREAS COVERED: In this review, the authors discuss the many facets of human noise-induced pathology, and the primary experimental models for studying the basic mechanisms of noise-induced damage, making connections and inferences among basic science studies, preclinical proofs of concept and clinical trials. EXPERT OPINION: Whilst experimental research in animal models has helped to unravel the mechanisms of noise-induced hearing loss, there are often methodological variations and conflicting results between animal and human studies which make it difficult to integrate data and translate basic outcomes to clinical practice. Standardization of exposure paradigms and application of -omic technologies will contribute to improving the effectiveness of transferring newly gained knowledge to clinical practice.


Drug Development , Hearing Loss, Noise-Induced/drug therapy , Molecular Targeted Therapy , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Hearing Loss, Noise-Induced/physiopathology , Humans , Species Specificity
...